Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685031

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Brain Injuries, Traumatic , Brain , Cognitive Dysfunction , Diet, High-Fat , Macrophages , Mice, Inbred C57BL , Microglia , Animals , Diet, High-Fat/adverse effects , Microglia/metabolism , Microglia/pathology , Male , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Macrophages/metabolism , Macrophages/pathology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain/pathology , Brain/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Recognition, Psychology/physiology , Obesity/pathology , Obesity/complications , Maze Learning/physiology
2.
J Neuroinflammation ; 21(1): 83, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581043

BACKGROUND: It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS: To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS: TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS: TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.


Brain Injuries, Traumatic , Brain Injuries , Mice , Animals , Neuroinflammatory Diseases , Mice, Inbred C57BL , Brain Injuries, Traumatic/pathology , Brain Injuries/pathology , Brain/metabolism
3.
Res Sq ; 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37790560

Traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function which contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham congenic donor mice into otherwise healthy, age-matched, irradiated hosts. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI showed that longer reconstitution periods were associated with increased microgliosis and leukocyte infiltration. Thus, TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in innate immunity and neurological function, as well as altered sensitivity to subsequent brain injury.

4.
Cells ; 12(17)2023 08 30.
Article En | MEDLINE | ID: mdl-37681904

The transformation of astrocytes into reactive states constitutes a biological response of the central nervous system under a variety of pathological insults. Astrocytes display diverse homeostatic identities that are developmentally predetermined and regionally specified. Upon transformation into reactive states associated with neurodegenerative diseases and other neurological disorders, astrocytes acquire diverse reactive phenotypes. However, it is not clear whether their reactive phenotypes are dictated by region-specific homeostatic identity or by the nature of an insult. To address this question, region-specific gene expression profiling was performed for four brain regions (cortex, hippocampus, thalamus, and hypothalamus) in mice using a custom NanoString panel consisting of selected sets of genes associated with astrocyte functions and their reactivity for five conditions: prion disease, traumatic brain injury, brain ischemia, 5XFAD Alzheimer's disease model and normal aging. Upon transformation into reactive states, genes that are predominantly associated with astrocytes were found to respond to insults in a region-specific manner. Regardless of the nature of the insult or the insult-specificity of astrocyte response, strong correlations between undirected GSA (gene set analysis) scores reporting on astrocyte reactivity and on their homeostatic functions were observed within each individual brain region. The insult-specific gene expression signatures did not separate well from each other and instead partially overlapped, forming continuums. The current study demonstrates that region-specific homeostatic identities of astrocytes are important for defining their response to pathological insults. Within region-specific populations, reactive astrocytes show continuums of gene expression signatures, partially overlapping between individual insults.


Brain Injuries, Traumatic , Brain Ischemia , Animals , Mice , Astrocytes , Central Nervous System , Aging
5.
bioRxiv ; 2023 Jul 29.
Article En | MEDLINE | ID: mdl-37546932

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). We performed a detailed analysis of transcriptomic changes in the brain and adipose tissue to examine the interactive effects between high-fat diet-induced obesity (DIO) and TBI in relation to central and peripheral inflammatory pathways, as well as neurological function. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. Combined TBI and HFD resulted in additive dysfunction in the Y-Maze, novel object recognition (NOR), and Morris water maze (MWM) cognitive function tests. We also performed high-throughput transcriptomic analysis using Nanostring panels of cellular compartments in the brain and total visceral adipose tissue (VAT), followed by unsupervised clustering, principal component analysis, and IPA pathway analysis to determine shifts in gene expression programs and molecular pathway activity. Analysis of cellular populations in the cortex and hippocampus as well as in visceral adipose tissue during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in select gene expression signatures and pathways. These data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and visceral adipose tissue macrophages, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue macrophages, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.

6.
Sci Adv ; 9(10): eadd1101, 2023 03 10.
Article En | MEDLINE | ID: mdl-36888713

Lipofuscin is an autofluorescent (AF) pigment formed by lipids and misfolded proteins, which accumulates in postmitotic cells with advanced age. Here, we immunophenotyped microglia in the brain of old C57BL/6 mice (>18 months old) and demonstrate that in comparison to young mice, one-third of old microglia are AF, characterized by profound changes in lipid and iron content, phagocytic activity, and oxidative stress. Pharmacological depletion of microglia in old mice eliminated the AF microglia following repopulation and reversed microglial dysfunction. Age-related neurological deficits and neurodegeneration after traumatic brain injury (TBI) were attenuated in old mice lacking AF microglia. Furthermore, increased phagocytic activity, lysosomal burden, and lipid accumulation in microglia persisted for up to 1 year after TBI, were modified by APOE4 genotype, and chronically driven by phagocyte-mediated oxidative stress. Thus, AF may reflect a pathological state in aging microglia associated with increased phagocytosis of neurons and myelin and inflammatory neurodegeneration that can be further accelerated by TBI.


Brain Injuries, Traumatic , Brain Injuries , Animals , Mice , Microglia/metabolism , Mice, Inbred C57BL , Brain Injuries/complications , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries, Traumatic/complications , Brain/metabolism , Phenotype , Lipids
7.
Trends Neurosci ; 44(5): 406-418, 2021 05.
Article En | MEDLINE | ID: mdl-33495023

Traumatic brain injury (TBI) is a debilitating disorder associated with chronic progressive neurodegeneration and long-term neurological decline. Importantly, there is now substantial and increasing evidence that TBI can negatively impact systemic organs, including the pulmonary, gastrointestinal (GI), cardiovascular, renal, and immune system. Less well appreciated, until recently, is that such functional changes can affect both the response to subsequent insults or diseases, as well as contribute to chronic neurodegenerative processes and long-term neurological outcomes. In this review, we summarize evidence showing bidirectional interactions between the brain and systemic organs following TBI and critically assess potential underlying mechanisms.


Brain Injuries, Traumatic , Cognitive Dysfunction , Animals , Brain , Humans , Mice , Mice, Inbred C57BL
8.
J Neurochem ; 156(2): 225-248, 2021 01.
Article En | MEDLINE | ID: mdl-31926033

We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3ß. GSK-3ß regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3ß/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3ß/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3ß/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.


Brain Injuries, Traumatic/metabolism , Microglia/drug effects , Neuroprotective Agents/pharmacology , Niacinamide/analogs & derivatives , Receptor, Metabotropic Glutamate 5/drug effects , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Male , Mice , Microglia/metabolism , Niacinamide/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction/physiology
9.
Brain Behav Immun ; 92: 165-183, 2021 02.
Article En | MEDLINE | ID: mdl-33307173

Extracellular vesicles (EVs) have been implicated mechanistically in the pathobiology of neurodegenerative disorders, including central nervous system injury. However, the role of EVs in spinal cord injury (SCI) has received limited attention to date. Moreover, technical limitations related to EV isolation and characterization methods can lead to misleading or contradictory findings. Here, we examined changes in plasma EVs after mouse SCI at multiple timepoints (1d, 3d, 7d, 14d) using complementary measurement techniques. Plasma EVs isolated by ultracentrifugation (UC) were decreased at 1d post-injury, as shown by nanoparticle tracking analysis (NTA), and paralleled an overall reduction in total plasma extracellular nanoparticles. Western blot (WB) analysis of UC-derived plasma EVs revealed increased expression of the tetraspanin exosome marker, CD81, between 1d and 7d post-injury. To substantiate these findings, we performed interferometric and fluorescence imaging of single, tetraspanin EVs captured directly from plasma with ExoView®. Consistent with WB, we observed significantly increased plasma CD81+ EV count and cargo at 1d post-injury. The majority of these tetraspanin EVs were smaller than 50 nm based on interferometry and were insufficiently resolved by flow cytometry-based detection. At the injury site, there was enhanced expression of EV biogenesis proteins that were also detected in EVs directly isolated from spinal cord tissue by WB. Surface expression of tetraspanins CD9 and CD63 increased in multiple cell types at the injury site; however, astrocyte CD81 expression uniquely decreased, as demonstrated by flow cytometry. UC-isolated plasma EV microRNA cargo was also significantly altered at 1d post-injury with changes similar to that reported in EVs released by astrocytes after inflammatory stimulation. When injected into the lateral ventricle, plasma EVs from SCI mice increased both pro- and anti-inflammatory gene as well as reactive astrocyte gene expression in the brain cortex. These studies provide the first detailed characterization of plasma EV dynamics after SCI and suggest that plasma EVs may be involved in posttraumatic brain inflammation.


Exosomes , Extracellular Vesicles , MicroRNAs , Nanoparticles , Spinal Cord Injuries , Animals , Mice
11.
Cell Death Dis ; 11(7): 587, 2020 07 27.
Article En | MEDLINE | ID: mdl-32719328

DNA damage triggers cell death mechanisms contributing to neuronal loss and cognitive decline in neurological disorders, including traumatic brain injury (TBI), and as a side effect of chemotherapy. Mithramycin, which competitively targets chromatin-binding sites of specificity protein 1 (Sp1), was used to examine previously unexplored neuronal cell death regulatory mechanisms via rat primary neurons in vitro and after TBI in mice (males). In primary neurons exposed to DNA-damage-inducing chemotherapy drugs in vitro we showed that DNA breaks sequentially initiate DNA-damage responses, including phosphorylation of ATM, H2AX and tumor protein 53 (p53), transcriptional activation of pro-apoptotic BH3-only proteins, and mitochondrial outer membrane permeabilization (MOMP), activating caspase-dependent and caspase-independent intrinsic apoptosis. Mithramycin was highly neuroprotective in DNA-damage-dependent neuronal cell death, inhibiting chemotherapeutic-induced cell death cascades downstream of ATM and p53 phosphorylation/activation but upstream of p53-induced expression of pro-apoptotic molecules. Mithramycin reduced neuronal upregulation of BH3-only proteins and mitochondrial dysfunction, attenuated caspase-3/7 activation and caspase substrates' cleavage, and limited c-Jun activation. Chromatin immunoprecipitation indicated that mithramycin attenuates Sp1 binding to pro-apoptotic gene promoters without altering p53 binding suggesting it acts by removing cofactors required for p53 transactivation. In contrast, the DNA-damage-independent neuronal death models displayed caspase initiation in the absence of p53/BH3 activation and were not protected even when mithramycin reduced caspase activation. Interestingly, experimental TBI triggers a multiplicity of neuronal death mechanisms. Although markers of DNA-damage/p53-dependent intrinsic apoptosis are detected acutely in the injured cortex and are attenuated by mithramycin, these processes may play a reduced role in early neuronal death after TBI, as caspase-dependent mechanisms are repressed in mature neurons while other, mithramycin-resistant mechanisms are active. Our data suggest that Sp1 is required for p53-mediated transactivation of neuronal pro-apoptotic molecules and that mithramycin may attenuate neuronal cell death in conditions predominantly involving DNA-damage-induced p53-dependent intrinsic apoptosis.


DNA Damage , Neurons/pathology , Plicamycin/pharmacology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Etoposide/pharmacology , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Neurons/drug effects , Neuroprotective Agents/pharmacology , Plicamycin/therapeutic use , Proto-Oncogene Proteins c-jun/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/metabolism
12.
J Neurotrauma ; 37(24): 2709-2717, 2020 12 15.
Article En | MEDLINE | ID: mdl-32484024

Traumatic brain injury (TBI) patients are reported to experience long-term sensorimotor dysfunction, with gait deficits evident up to 2 years after the initial brain trauma. Experimental TBI including rodent models of penetrating ballistic-like brain injury and severe controlled cortical impact (CCI) can induce impairments in static and dynamic gait parameters. It is reported that the majority of deficits in gait-related parameters occur during the acute phase post-injury, as functional outcomes return toward baseline levels at chronic time points. In the present study, we carried out a longitudinal analysis of static, temporal and dynamic gait patterns following moderate-level CCI in adult male C57Bl/6J mice using the automated gait analysis apparatus, CatWalk. For comparison, we also performed longitudinal assessment of fine-motor coordination and function in CCI mice using more traditional sensorimotor behavioral tasks such as the beamwalk and accelerating rotarod tasks. We determined that longitudinal CatWalk analysis did not detect TBI-induced deficits in static, temporal, or dynamic gait parameters at acute or chronic time points. In contrast, the rotarod and beamwalk tasks showed that CCI mice had significant motor function impairments as demonstrated by deficits in balance and fine-motor coordination through 28 days post-injury. Stereological analysis confirmed that CCI produced a significant lesion in the parietal cortex at 28 days post-injury. Overall, these findings demonstrate that CatWalk analysis of gait parameters is not useful for assessment of long-term sensorimotor dysfunction after CCI, and that more traditional neurobehavioral tests should be used to quantify acute and chronic deficits in sensorimotor function.


Brain Injuries, Traumatic/complications , Gait Analysis/methods , Psychomotor Disorders/etiology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Psychomotor Performance
13.
Crit Care Med ; 48(5): e418-e428, 2020 05.
Article En | MEDLINE | ID: mdl-32149839

OBJECTIVES: Respiratory infections in the postacute phase of traumatic brain injury impede optimal recovery and contribute substantially to overall morbidity and mortality. This study investigated bidirectional innate immune responses between the injured brain and lung, using a controlled cortical impact model followed by secondary Streptococcus pneumoniae infection in mice. DESIGN: Experimental study. SETTING: Research laboratory. SUBJECTS: Adult male C57BL/6J mice. INTERVENTIONS: C57BL/6J mice were subjected to sham surgery or moderate-level controlled cortical impact and infected intranasally with S. pneumoniae (1,500 colony-forming units) or vehicle (phosphate-buffered saline) at 3 or 60 days post-injury. MAIN RESULTS: At 3 days post-injury, S. pneumoniae-infected traumatic brain injury mice (TBI + Sp) had a 25% mortality rate, in contrast to no mortality in S. pneumoniae-infected sham (Sham + Sp) animals. TBI + Sp mice infected 60 days post-injury had a 60% mortality compared with 5% mortality in Sham + Sp mice. In both studies, TBI + Sp mice had poorer motor function recovery compared with TBI + PBS mice. There was increased expression of pro-inflammatory markers in cortex of TBI + Sp compared with TBI + PBS mice after both early and late infection, indicating enhanced post-traumatic neuroinflammation. In addition, monocytes from lungs of TBI + Sp mice were immunosuppressed acutely after traumatic brain injury and could not produce interleukin-1ß, tumor necrosis factor-α, or reactive oxygen species. In contrast, after delayed infection monocytes from TBI + Sp mice had higher levels of interleukin-1ß, tumor necrosis factor-α, and reactive oxygen species when compared with Sham + Sp mice. Increased bacterial burden and pathology was also found in lungs of TBI + Sp mice. CONCLUSIONS: Traumatic brain injury causes monocyte functional impairments that may affect the host's susceptibility to respiratory infections. Chronically injured mice had greater mortality following S. pneumoniae infection, which suggests that respiratory infections even late after traumatic brain injury may pose a more serious threat than is currently appreciated.


Brain Injuries, Traumatic/epidemiology , Monocytes/metabolism , Respiratory Tract Infections/epidemiology , Staphylococcal Infections/epidemiology , Animals , Brain Injuries, Traumatic/physiopathology , Disease Models, Animal , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Pneumonia, Staphylococcal , Respiratory Tract Infections/mortality , Staphylococcal Infections/mortality
14.
J Neurosci ; 40(14): 2960-2974, 2020 04 01.
Article En | MEDLINE | ID: mdl-32094203

Chronic neuroinflammation with sustained microglial activation occurs following severe traumatic brain injury (TBI) and is believed to contribute to subsequent neurodegeneration and neurological deficits. Microglia, the primary innate immune cells in brain, are dependent on colony stimulating factor 1 receptor (CSF1R) signaling for their survival. In this preclinical study, we examined the effects of delayed depletion of chronically activated microglia on functional recovery and neurodegeneration up to 3 months postinjury. A CSF1R inhibitor, Plexxikon (PLX) 5622, was administered to adult male C57BL/6J mice at 1 month after controlled cortical impact to remove chronically activated microglia, and the inhibitor was withdrawn 1-week later to allow for microglial repopulation. Following TBI, the repopulated microglia displayed a ramified morphology similar to that of Sham uninjured mice, whereas microglia in vehicle-treated TBI mice showed the typical chronic posttraumatic hypertrophic morphology. PLX5622 treatment limited TBI-associated neuropathological changes at 3 months postinjury; these included a smaller cortical lesion, reduced hippocampal neuron cell death, and decreased NOX2- and NLRP3 inflammasome-associated neuroinflammation. Furthermore, delayed depletion of chronically activated microglia after TBI led to widespread changes in the cortical transcriptome and altered gene pathways involved in neuroinflammation, oxidative stress, and neuroplasticity. Using a variety of complementary neurobehavioral tests, PLX5622-treated TBI mice also had improved long-term motor and cognitive function recovery through 3 months postinjury. Together, these studies demonstrate that chronic phase removal of neurotoxic microglia after TBI using CSF1R inhibitors markedly reduce chronic neuroinflammation and associated neurodegeneration, as well as related motor and cognitive deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a debilitating neurological disorder that can seriously impact the patient's quality of life. Microglial-mediated neuroinflammation is induced after severe TBI and contributes to neurological deficits and on-going neurodegenerative processes. Here, we investigated the effect of breaking the neurotoxic neuroinflammatory loop at 1-month after controlled cortical impact in mice by pharmacological removal of chronically activated microglia using a colony stimulating factor 1 receptor (CSF1R) inhibitor, Plexxikon 5622. Overall, we show that short-term elimination of microglia during the chronic phase of TBI followed by repopulation results in long-term improvements in neurological function, suppression of neuroinflammatory and oxidative stress pathways, and a reduction in persistent neurodegenerative processes. These studies are clinically relevant and support new concepts that the therapeutic window for TBI may be far longer than traditionally believed if chronic and evolving microglial-mediated neuroinflammation can be inhibited or regulated in a precise manner.


Brain Injuries, Traumatic/pathology , Microglia/drug effects , Nerve Degeneration/pathology , Neuroprotective Agents/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology
15.
J Neurosci ; 40(11): 2357-2370, 2020 03 11.
Article En | MEDLINE | ID: mdl-32029532

DNA damage and type I interferons (IFNs) contribute to inflammatory responses after traumatic brain injury (TBI). TBI-induced activation of microglia and peripherally-derived inflammatory macrophages may lead to tissue damage and neurological deficits. Here, we investigated the role of IFN-ß in secondary injury after TBI using a controlled cortical impact model in adult male IFN-ß-deficient (IFN-ß-/-) mice and assessed post-traumatic neuroinflammatory responses, neuropathology, and long-term functional recovery. TBI increased expression of DNA sensors cyclic GMP-AMP synthase and stimulator of interferon genes in wild-type (WT) mice. IFN-ß and other IFN-related and neuroinflammatory genes were also upregulated early and persistently after TBI. TBI increased expression of proinflammatory mediators in the cortex and hippocampus of WT mice, whereas levels were mitigated in IFN-ß-/- mice. Moreover, long-term microglia activation, motor, and cognitive function impairments were decreased in IFN-ß-/- TBI mice compared with their injured WT counterparts; improved neurological recovery was associated with reduced lesion volume and hippocampal neurodegeneration in IFN-ß-/- mice. Continuous central administration of a neutralizing antibody to the IFN-α/ß receptor (IFNAR) for 3 d, beginning 30 min post-injury, reversed early cognitive impairments in TBI mice and led to transient improvements in motor function. However, anti-IFNAR treatment did not improve long-term functional recovery or decrease TBI neuropathology at 28 d post-injury. In summary, TBI induces a robust neuroinflammatory response that is associated with increased expression of IFN-ß and other IFN-related genes. Inhibition of IFN-ß reduces post-traumatic neuroinflammation and neurodegeneration, resulting in improved neurological recovery. Thus, IFN-ß may be a potential therapeutic target for TBI.SIGNIFICANCE STATEMENT TBI frequently causes long-term neurological and psychiatric changes in head injury patients. TBI-induced secondary injury processes including persistent neuroinflammation evolve over time and can contribute to chronic neurological impairments. The present study demonstrates that TBI is followed by robust activation of type I IFN pathways, which have been implicated in microglial-associated neuroinflammation and chronic neurodegeneration. We examined the effects of genetic or pharmacological inhibition of IFN-ß, a key component of type I IFN mechanisms to address its role in TBI pathophysiology. Inhibition of IFN-ß signaling resulted in reduced neuroinflammation, attenuated neurobehavioral deficits, and limited tissue loss long after TBI. These preclinical findings suggest that IFN-ß may be a potential therapeutic target for TBI.


Brain Damage, Chronic/physiopathology , Brain Injuries, Traumatic/physiopathology , Interferon-beta/physiology , Nerve Degeneration/etiology , Animals , Brain Damage, Chronic/etiology , Brain Injuries, Traumatic/complications , Cerebral Cortex/metabolism , Exploratory Behavior/physiology , Gene Expression Regulation , Hippocampus/metabolism , Inflammation , Interferon-beta/biosynthesis , Interferon-beta/deficiency , Interferon-beta/genetics , Male , Maze Learning/physiology , Memory Disorders/etiology , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Microglia/physiology , Movement Disorders/etiology , Movement Disorders/physiopathology , Random Allocation , Receptor, Interferon alpha-beta/immunology , Signal Transduction , Up-Regulation
16.
Brain Behav Immun ; 82: 372-381, 2019 Nov.
Article En | MEDLINE | ID: mdl-31505257

Depression is a well-recognised effect of long-term treatment with interferon-alpha (IFN-α), a widely used treatment for chronic viral hepatitis and malignancy. In addition to the emotional disturbances, high incidences of painful symptoms such as headache and joint pain have also been reported following IFN-α treatment. The endocannabinoid system plays an important role in emotional and nociceptive processing, however it is unknown whether repeated IFN-α administration induces alterations in this system. The present study investigated nociceptive responding in the IFN-α-induced mouse model of depression and associated changes in the endocannabinoid system. Furthermore, the effects of modulating peripheral endocannabinoid tone on inflammatory pain-related behaviour in the IFN-α model was examined. Repeated IFN-α administration (8000 IU/g/day) to male C57/Bl6 mice increased immobility in the forced swim test and reduced sucrose preference, without altering body weight gain or locomotor activity, confirming development of the depressive-like phenotype. There was no effect of repeated IFN-α administration on latency to respond in the hot plate test on day 4 or 7 of treatment, however, formalin-evoked nociceptive behaviour was significantly increased in IFN-α treated mice following 8 days of IFN-α administration. 2-Arachidonoyl glycerol (2-AG) levels in the periaqueductal grey (PAG) and rostroventromedial medulla (RVM), and anandamide (AEA) levels in the RVM, were significantly increased in IFN-α-, but not saline-, treated mice following formalin administration. There was no change in endocannabinoid levels in the prefrontal cortex, spinal cord or paw tissue between saline- or IFNα-treated mice in the presence or absence of formalin. Furthermore, repeated IFN-α and/or formalin administration did not alter mRNA expression of genes encoding the endocannabinoid catabolic enzymes (fatty acid amide hydrolase or monoacylglycerol lipase) or endocannabinoid receptor targets (CB1, CB2 or PPARs) in the brain, spinal cord or paw tissue. Intra plantar administration of PF3845 (1 µg/10 µl) or MJN110 (1 µg/10 µl), inhibitors of AEA and 2-AG catabolism respectively, attenuated formalin-evoked hyperalgesia in IFN-α, but not saline-, treated mice. In summary, increasing peripheral endocannabinoid tone attenuates inflammatory hyperalgesia induced following repeated IFN-α administration. These data provide support for the endocannabinoid system in mediating and modulating heightened pain responding associated with IFNα-induced depression.


Depression/metabolism , Endocannabinoids/metabolism , Interferon-alpha/metabolism , Amidohydrolases/metabolism , Animals , Arachidonic Acids/metabolism , Glycerides/metabolism , Hyperalgesia/immunology , Hyperalgesia/metabolism , Interferon-alpha/pharmacology , Male , Mice , Monoacylglycerol Lipases/metabolism , Nociceptors/drug effects , Nociceptors/metabolism , Pain/metabolism , Pain/physiopathology , Polyunsaturated Alkamides/metabolism
17.
Neurotherapeutics ; 16(1): 216-230, 2019 01.
Article En | MEDLINE | ID: mdl-30225790

Micro-RNAs (miRs) are short, noncoding RNAs that negatively regulate gene expression at the post-transcriptional level and have been implicated in the pathophysiology of secondary damage after traumatic brain injury (TBI). Among miRs linked to inflammation, miR-155 has been implicated as a pro-inflammatory factor in a variety of organ systems. We examined the expression profile of miR-155, following experimental TBI (controlled cortical impact) in adult male C57Bl/6 mice, as well as the effects of acute or delayed administration of a miR-155 antagomir on post-traumatic neuroinflammatory responses and neurological recovery. Trauma robustly increased miR-155 expression in the injured cortex over 7 days. Similar TBI-induced miR-155 expression changes were also found in microglia/macrophages isolated from the injured cortex at 7 days post-injury. A miR-155 hairpin inhibitor (antagomir; 0.5 nmol), administered intracerebroventricularly (ICV) immediately after injury, attenuated neuroinflammatory markers at both 1 day and 7 days post-injury and reduced impairments in spatial working memory. Delayed ICV infusion of the miR-155 antagomir (0.5 nmol/day), beginning 24 h post-injury and continuing for 6 days, attenuated neuroinflammatory markers at 7 days post-injury and improved motor, but not cognitive, function through 28 days. The latter treatment limited NADPH oxidase 2 expression changes in microglia/macrophages in the injured cortex and reduced cortical lesion volume. In summary, TBI causes a robust and persistent neuroinflammatory response that is associated with increased miR-155 expression in microglia/macrophages, and miR-155 inhibition reduces post-traumatic neuroinflammatory responses and improves neurological recovery. Thus, miR-155 may be a therapeutic target for TBI-related neuroinflammation.


Antagomirs/administration & dosage , Brain Injuries, Traumatic , MicroRNAs/antagonists & inhibitors , Neurogenic Inflammation , Animals , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/physiopathology , Male , Mice , Mice, Inbred C57BL , Neurogenic Inflammation/genetics , Recovery of Function/drug effects , Recovery of Function/genetics
18.
J Neurotrauma ; 36(7): 1040-1053, 2019 04 01.
Article En | MEDLINE | ID: mdl-30259790

The inflammatory response to moderate-severe controlled cortical impact (CCI) in adult male mice has been shown to exhibit greater glial activation compared with age-matched female mice. However, the relative contributions of resident microglia and infiltrating peripheral myeloid cells to this sexually dimorphic neuroinflammatory responses remains unclear. Here, 12-week-old male and female C57Bl/6 mice were subjected to sham or CCI, and brain samples were collected at 1, 3, or 7 days post-injury for flow cytometry analysis of cytokines, reactive oxygen species (ROS), and phagocytosis in resident microglia (CD45intCD11b+) versus infiltrating myeloid cells (CD45hiCD11b+). Motor (rotarod, cylinder test), affect (open field), and cognitive (Y-maze) function tests also were performed. We demonstrate that male microglia had increased phagocytic activity and higher ROS levels in the non-injured brain, whereas female microglia had increased production of tumor necrosis factor (TNF) α and interleukin (IL)-1ß. Following CCI, males showed a significant influx of peripheral myeloid cells by 1 day post-injury followed by proliferation of resident microglia at 3 days. In contrast, myeloid infiltration and microglial activation responses in female CCI mice were significantly reduced. No sex differences were observed for TNFα, IL-1ß, transforming growth factor ß, NOX2, ROS production, or phagocytic activity in resident microglia or infiltrating cells at any time. However, across these functions, infiltrating myeloid cells were significantly more reactive than resident microglia. Female CCI mice also had improved motor function at 1 day post-injury compared with male mice. Thus, we conclude that sexually dimorphic responses to moderate-severe CCI result from the rapid activation and infiltration of pro-inflammatory myeloid cells to brain in male, but not female, mice.


Brain Injuries, Traumatic/complications , Inflammation/etiology , Myeloid Cells/pathology , Sex Characteristics , Animals , Behavior, Animal/physiology , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cognition/physiology , Cytokines/metabolism , Disease Models, Animal , Female , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Microglia/metabolism , Microglia/pathology , Myeloid Cells/metabolism , Phagocytosis/physiology , Reactive Oxygen Species/metabolism
19.
J Pharmacol Exp Ther ; 368(3): 338-352, 2019 03.
Article En | MEDLINE | ID: mdl-30563941

Neuroinflammation is one of the key secondary injury mechanisms triggered by traumatic brain injury (TBI). Microglial activation, a hallmark of brain neuroinflammation, plays a critical role in regulating immune responses after TBI and contributes to progressive neurodegeneration and neurologic deficits following brain trauma. Here we evaluated the role of neutral sphingomyelinase (nSMase) in microglial activation by examining the effects of the nSMase inhibitors altenusin and GW4869 in vitro (using BV2 microglia cells and primary microglia), as well as in a controlled cortical injury (CCI) model in adult male C57BL/6 mice. Pretreatment of altenusin or GW4869 prior to lipopolysaccharide (LPS) stimulation for 4 or 24 hours, significantly downregulated gene expression of the pro-inflammatory mediators TNF-α, IL-1ß, IL-6, iNOS, and CCL2 in microglia and reduced the release of nitric oxide and TNF-α These nSMase inhibitors also attenuated the release of microparticles and phosphorylation of p38 MAPK and ERK1/2. In addition, altenusin pretreatment also reduced the gene expression of multiple inflammatory markers associated with microglial activation after experimental TBI, including TNF-α, IL-1ß, IL-6, iNOS, CCL2, CD68, NOX2, and p22phox Overall, our data demonstrate that nSMase inhibitors attenuate multiple inflammatory pathways associated with microglial activation in vitro and after experimental TBI. Thus, nSMase inhibitors may represent promising therapeutics agents targeting neuroinflammation.


Brain Injuries, Traumatic/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Microglia/metabolism , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Animals , Brain Injuries, Traumatic/chemically induced , Brain Injuries, Traumatic/prevention & control , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Rats , Rats, Sprague-Dawley
20.
J Neurotrauma ; 35(13): 1419-1436, 2018 07 01.
Article En | MEDLINE | ID: mdl-29421977

There is a compelling link between severe brain trauma and immunosuppression in patients with traumatic brain injury (TBI). Although acute changes in the systemic immune compartment have been linked to outcome severity, the long-term consequences of TBI on systemic immune function are unknown. Here, adult male C57Bl/6 mice underwent moderate-level controlled cortical impact (CCI) or sham surgery, and systemic immune function was evaluated at 1, 3, 7, 14, and 60 days post-injury. Bone marrow, blood, thymus, and spleen were examined by flow cytometry to assess changes in immune composition, reactive oxygen species (ROS) production, phagocytic activity, and cytokine production. Bone marrow derived macrophages (BMDMs) from sham and 60-day CCI mice were cultured for immune challenge studies using lipopolysaccharide (LPS) and interleukin-4 (IL-4) models. Acutely, TBI caused robust bone marrow activation and neutrophilia. Neutrophils and monocytes exhibited impairments in respiratory burst, cytokine production, and phagocytosis; in contrast, ROS levels and pro-inflammatory cytokine production were chronically elevated at 60 days post-injury. Cultures of BMDMs from chronic CCI mice demonstrated defects in LPS- and IL-4-induced polarization when compared with stimulated BMDMs from sham mice. TBI also caused thymic involution, inverted CD4:CD8 ratios, chronic T lymphopenia, greater memory conversion, increased T cell activation, impaired interferon γ induction, and chronically elevated Th1 cytokine and ROS production. Collectively, our in-depth phenotypic and functional analyses demonstrate that TBI induces widespread suppression of innate and adaptive immune responses after TBI. Moreover, at chronic time points, TBI mice exhibit hallmarks of accelerated immune aging, displaying chronic deficits in systemic immune function.


Adaptive Immunity/immunology , Brain Injuries, Traumatic/immunology , Immunity, Innate/immunology , Animals , Male , Mice , Mice, Inbred C57BL
...